本
文
摘
要
现在很多人都喜欢拍照( *** )。有限的滤镜和装饰玩多了也会腻,所以就有 APP 提供了模仿名画风格的功能,比如 pri *** a、versa 等,可以把你的照片变成 梵高、毕加索、蒙克 等大师的风格。
这种功能叫做“图像风格迁移”,几乎都是基于 CVPR 2015 的论文《A Neural Algorithm of Artistic Style》和 ECCV 2016 的论文《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》中提出的算法,以及后续相关研究的基础上开发出来的。
通俗来讲,就是借助于神经网络,预先将名画中的风格训练成出模型,在将其应用在不同的照片上,生成新的风格化图像。
来自《A Neural Algorithm of Artistic Style》而因为神经网络在计算机视觉方面的应用越来越广,著名的视觉开发库 OpenCV 在 3.3 版本中正式引入 DNN(深度神经网络),支持 Caffe、TensorFlow、Torch/PyTorch 等主流框架的模型,可用以实现图像的识别、检测、分类、分割、着色等功能。
我最近才发现在 OpenCV 的 Sample 代码中就有图像风格迁移的 Python 示例(原谅我的后知后觉),是基于 ECCV 2016 论文中的网络模型实现。所以,即使作为人工智能的菜鸟,也可以拿别人训练好的模型来玩一玩,体会下神经网络的奇妙。(相关代码和模型的获取见文末)
OpenCV 官方代码地址: https://github.com/opencv/opencv/blob/3.4.0/samples/dnn/fast_neural_style.py
目录下通过执行命令运行代码:
python fast_neural_style.py --model starry_night.t7model 参数是提供预先训练好的模型文件路径,OpenCV 没有提供下载,但给出的参考项目 https://github.com/jcjohnson/fast-neural-style 中可以找到
其他可设置参数有:
input 可以指定原始图片/视频,如果不提供就默认使用摄像头实时采集。width、height,调整处理图像的大小,设置小一点可以提高计算速度。在我自己的电脑上,300x200 的转换视频可以达到 15 帧/秒。median_filter 中值滤波的窗口大小,用来对结果图像进行平滑处理,这个对结果影响不大。执行后的效果(取自 jcjohnson/fast-neural-style):
原始图像ECCV16 modelsinstance_norm models核心代码其实很短,就是 加载模型 -> 读取图片 -> 进行计算 -> 输出图片,我在官方示例基础上进一步简化了一下:
import cv2 # 加载模型 net = cv2.dnn.readNetFromTorch(the_scream.t7) net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV); # 读取图片 image = cv2.imread(test.jpg) (h, w) = image.shape[:2] blob = cv2.dnn.blobFromImage(image, 1.0, (w, h), (103.939, 116.779, 123.680), swapRB=False, crop=False) # 进行计算 net.setInput(blob) out = net.forward() out = out.reshape(3, out.shape[2], out.shape[3]) out[0] += 103.939 out[1] += 116.779 out[2] += 123.68 out /= 255 out = out.transpose(1, 2, 0) # 输出图片 cv2.imshow(Styled image, out) cv2.waitKey(0)执行结果:
另外还改了个多效果实时对比的版本(计算量大了,很卡顿),也一并上传在代码中。
PS:前两天看赵雷演唱会的时候我还说:他演唱会的背景 MV 大量使用了 图像二值化、边缘检测 等操作,让我想到以前数字图像处理课的大作业……现在图像风格迁移的效率达到了实时,想必以后也会经常被使用吧
════
其他文章及回答:如何自学Python | 新手引导 | *** Python问答 | 如何debug? | Python单词表 | 知乎下载器 | 人工智能 | 嘻哈 | 爬虫 | 我用Python | 抓抖音 | requests | AI平台
欢迎微信搜索及关注:Crossin的编程教室